Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 150(12): 124307, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927886

RESUMO

The C3 molecule is an important species with implications in combustion and astrochemistry, and much of the interest in this molecule is related to its interactions with other species found in these environments. We have utilized helium droplet beam techniques along with a recently developed carbon cluster evaporation source to assemble C3-(H2O)n and C3-(D2O)n complexes with n = 1-2 and to record their rovibrational spectra. We observe only a single isomer of the n = 1 complex, in agreement with theoretical predictions as well as data from earlier matrix isolation studies. The spectra of the n = 1 complex are consistent with the ab initio structure, which involves a nearly linear arrangement of CCC-HO atoms in the complex. The C3-H2O spectrum we obtain exhibits slight differences from the analogous C3-D2O spectrum, which we assign to a difference in linewidth between the two spectra. We have also examined the n = 2 species and obtained a structure that appears to be distinct from those observed in matrix isolation studies and, to our knowledge, has not been previously observed.

2.
Fed Pract ; 35(Suppl 1): S20-S21, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30766387
3.
Rev Sci Instrum ; 88(1): 016101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147675

RESUMO

Helium droplet methods are currently established as a premier experimental technique for the production and spectroscopic study of novel clusters and complexes. Unfortunately, some of the essential equipment required to perform the experiments, such as the detector used to monitor photon-induced depletion of the helium droplet beam, can be relatively large, complex, and expensive. Most often this detector is a quadrupole mass spectrometer (QMS). In this report, we describe the development and evaluation of an extremely simple, straightforward, small, and inexpensive droplet beam detector for use in helium droplet spectroscopy experiments and compare its performance to that of a QMS by recording the infrared spectra of helium droplets doped with either 13CO2 or CD4.

4.
J Mater Chem C Mater ; 4(29): 6967-6974, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28133537

RESUMO

Carbon dots of small carbon nanoparticles surface-functionalized with 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) were synthesized, and the as-synthesized sample was separated on an aqueous gel column to obtain fractions of the EDA-carbon dots with different fluorescence quantum yields. As already discussed in the literature, the variations in fluorescence performance among the fractions were attributed to the different levels and/or effectiveness of the surface functionalization-passivation in the carbon dots. These fractions, as well as carbon nanoparticles without any deliberate surface functionalization, were dispersed into poly(vinyl alcohol) (PVA) for composite films. In the PVA film matrix, the carbon dots and nanoparticles exhibited much enhanced fluorescence emissions in comparison with their corresponding aqueous solutions. The increased fluorescence quantum yields in the films were determined quantitatively by using a specifically designed and constructed film sample holder in the emission spectrometer. The observed fluorescence decays of the EDA-carbon dots in film and in solution were essentially the same, suggesting that the significant enhancement in fluorescence quantum yields from solution to film is static in nature. Mechanistic implications of the results, including a rationalization in terms of the compression effect on the surface passivation layer (similar to a soft corona) in carbon dots when embedded in the more restrictive film environment resulting in more favorable radiative recombinations of the carbon particle surface-trapped electrons and holes, and also potential technological applications of the brightly fluorescent composite films are highlighted and discussed.

5.
J Chem Phys ; 142(17): 174310, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25956103

RESUMO

The catalytic reduction of CO2 to produce hydrocarbon fuels is a topic that has gained significant attention. Development of efficient catalysts is a key enabler to such approaches, and metal-based catalysts have shown promise towards this goal. The development of a fundamental understanding of the interactions between CO2 molecules and metal atoms is expected to offer insight into the chemistry that occurs at the active site of such catalysts. In the current study, we utilize helium droplet methods to assemble complexes composed of a CO2 molecule and a Mg or Al atom. High-resolution infrared (IR) spectroscopy and optically selected mass spectrometry are used to probe the structure and binding of the complexes, and the experimental observations are compared with theoretical results determined from ab initio calculations. In both the Mg-CO2 and Al-CO2 systems, two IR bands are obtained: one assigned to a linear isomer and the other assigned to a T-shaped isomer. In the case of the Mg-CO2 complexes, the vibrational frequencies and rotational constants associated with the two isomers are in good agreement with theoretical values. In the case of the Al-CO2 complexes, the vibrational frequencies agree with theoretical predictions; however, the bands from both structural isomers exhibit significant homogeneous broadening sufficient to completely obscure the rotational structure of the bands. The broadening is consistent with an upper state lifetime of 2.7 ps for the linear isomer and 1.8 ps for the T-shaped isomer. The short lifetime is tentatively attributed to a prompt photo-induced chemical reaction between the CO2 molecule and the Al atom comprising the complex.

6.
ACS Appl Mater Interfaces ; 7(16): 8363-76, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25845394

RESUMO

Quantum dots (QDs) generally refer to nanoscale particles of conventional semiconductors that are subject to the quantum-confinement effect, though other nanomaterials of similar optical and redox properties are also named as QDs even in the absence of strictly defined quantum confinement. Among such nanomaterials that have attracted tremendous recent interest are carbon dots, which are small carbon nanoparticles with some form of surface passivation, and graphene quantum dots in various configurations. In this article, we highlight these carbon-based QDs by focusing on their syntheses, on their photoexcited state properties and redox processes, and on their applications as photocatalysts in visible-light carbon dioxide reduction and in water-splitting, as well as on their mechanistic similarities and differences.

7.
Rev Sci Instrum ; 85(9): 094102, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273742

RESUMO

Helium droplet beam methods are a versatile technique that can be used to assemble a wide variety of atomic and molecular clusters. In recent years, methods have been developed to utilize helium droplets as nano-calorimeters to measure the binding energies of weakly bound complexes assembled within the droplet. In the current investigation we extend the helium droplet calorimetry approach to the study of a very strongly bound system: carbon clusters which are bound by several eV per atom. We utilize laser heating of bulk carbon samples to dope the helium droplets with evaporated carbon species. Depending on the laser target, the vaporization plume is found to consist primarily of C3 alone or C2 and C3. These species are sequentially captured by the droplet and assembled into larger carbon clusters in a stepwise manner. The assembled C(n) clusters are detected via mass spectrometry of the doped droplets and the droplet sizes required to detect the various carbon clusters observed are used to estimate the reaction energies of the associated assembly pathways. The helium droplet data qualitatively reflect the trends in assembly energetics, but at first glance appear to yield energies that differ dramatically from theoretical values. Statistical modeling of the helium droplet calorimetry experiment reconciles the differences quantitatively. Our modeling also generates a calibration curve that relates the assembly/reaction energy and threshold mean droplet size over a range of energies from van der Waals interactions to chemical bonding, enabling helium droplet calorimetry methods to be applied quantitatively to a large number of systems.

8.
Langmuir ; 30(28): 8631-6, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24972094

RESUMO

Carbon "quantum" dots (or carbon dots) have emerged as a new class of optical nanomaterials. Beyond the widely reported bright fluorescence emissions in carbon dots, their excellent photoinduced redox properties that resemble those found in conventional semiconductor nanostructures are equally valuable, with photon-electron conversion applications from photovoltaics to CO2 photocatalytic reduction. In this work we used gold-doped carbon dots from controlled synthesis as water-soluble catalysts for a closer examination of the visible-light photoconversion of CO2 into small organic acids, including acetic acid (for which the reduction requires many more electrons than that for formic acid) and, more interestingly, for the significantly enhanced photoconversion with higher CO2 pressures over an aqueous solution of the photocatalysts. The results demonstrate the nanoscale semiconductor-equivalent nature of carbon dots, with excellent potential in energy conversion applications.

9.
Rev Sci Instrum ; 83(7): 073109, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852673

RESUMO

Helium droplet beam methods have emerged as a versatile technique that can be used to assemble a wide variety of atomic and molecular clusters. We have developed a method to measure the binding energies of clusters assembled in helium droplets by determining the minimum droplet sizes required to assemble and detect selected clusters in the spectrum of the doped droplet beam. The differences in the droplet sizes required between the various multimers are then used to estimate the incremental binding energies. We have applied this method to measure the binding energies of cyclic water clusters from the dimer to the tetramer. We obtain measured values of D(0) that are in agreement with theoretical estimates to within ∼20%. Our results suggest that this threshold-based approach should be generally applicable using either mass spectrometry or optical spectroscopy techniques for detection, provided that the clusters selected for study are at least as strongly bound as those of water, and that a peak in the overall spectrum of the beam corresponding only to the cluster chosen (at least in the vicinity of the threshold) can be located.

10.
Rev Sci Instrum ; 81(5): 054101, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20515155

RESUMO

A strategy for forming and detecting cold ion-neutral clusters using superfluid helium nanodroplets is described. Sodium cations generated via thermionic emission are directed toward a beam of helium droplets that can also pick up neutral molecules and form a cluster with the captured Na(+). The composition of the clusters is determined by mass spectrometric analysis following a desolvation step. It is shown that the polar molecules H(2)O and HCN are picked up and form ion-neutral clusters with sizes and relative abundances that are in good agreement with those predicted by the statistics used to describe neutral cluster formation in helium droplets. [Na(H(2)O)(n)](+) clusters containing six to 43 water molecules were observed, a size range of sodiated water clusters difficult to access in the gas phase. Clusters containing N(2) were in lower abundance than expected, suggesting that the desolvation process heats the clusters sufficiently to dissociate those containing nonpolar molecules.


Assuntos
Hélio/química , Microfluídica/instrumentação , Microfluídica/métodos , Nanoestruturas/química , Temperatura Baixa , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Pressão , Soluções/química
11.
ACS Appl Mater Interfaces ; 2(1): 11-4, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20356213

RESUMO

The development of technologies that would lead toward the adoption of a hydrogen economy requires readily available, safe, and environmentally friendly access to hydrogen. This can be achieved using the aluminum-water reaction; however, the protective nature and stability of aluminum oxide is a clear detriment to its application. Here, we demonstrate the spontaneous generation of hydrogen gas from ordinary room-temperature tap water when combined with aluminum-oleic acid core-shell nanoparticles obtained via sonochemistry. The reaction is found to be near-complete (>95% yield hydrogen) with a tunable rate from 6.4x10(-4) to 0.01 g of H2/s/g of Al and to yield an environmentally benign byproduct. The potential of these nanoparticles as a source of hydrogen gas for power generation is demonstrated using a simple fuel cell with an applied load.


Assuntos
Alumínio/química , Hidrogênio/química , Nanopartículas Metálicas/química , Ácido Oleico/química , Água/química
12.
J Chem Phys ; 129(20): 201101, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19045843

RESUMO

The ionization and charge transfer processes, which occur when a doped helium droplet undergoes electron impact, are studied for droplets doped with van der Waals complexes with various structures and electrostatic moments. The mass spectra of the two isomers of hydrogen cyanide complexed with either cyanoacetylene or acetylene in helium droplets were obtained using optically selected mass spectrometry, and show that the structure of the complex has a large effect on the fragmentation pattern. The resulting fragmentation pattern is consistent with an ionization process in which charge steering strongly influences the site of initial ionization. The observed dissociation products may also be subject to caging by the helium matrix.


Assuntos
Hélio/química , Nanopartículas/química , Acetileno/análogos & derivados , Acetileno/química , Transporte de Elétrons , Cianeto de Hidrogênio/química , Isomerismo , Espectrometria de Massas , Nitrilas/química
13.
J Chem Phys ; 124(6): 64301, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16483201

RESUMO

Rotationally resolved infrared spectra are reported for the binary complexes of HCN and LiF, LiCl, NaF, and NaCl, formed in helium nanodroplets. Stark spectroscopy is used to determine the dipole moments for these complexes. Ab initio calculations are also reported for these complexes, revealing the existence of several different isomers of these binary systems. In the frequency region examined in this experimental study we only observe one of these, corresponding to the salt binding to the nitrogen end of the HCN molecule. The experimental rotational constants, dipole moments, and vibrational frequency shifts are all compared with the results from ab initio calculations for this isomer.

14.
J Chem Phys ; 123(14): 141103, 2005 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-16238367

RESUMO

A technique that combines infrared laser spectroscopy and helium nanodroplet mass spectrometry, which we refer to as optically selected mass spectrometry, is used to study the efficiency of ion cooling in helium. Electron-impact ionization is used to form He(+) ions within the droplets, which go on to transfer their charge to the HCN dopant molecules. Depending upon the droplet size, the newly formed ion either fragments or is cooled by the helium before fragmentation can occur. Comparisons with gas-phase fragmentation data suggest that the cooling provided by the helium is highly nonthermal. An "explosive" model is proposed for the cooling process, given that the initially hot ion is embedded in such a cold solvent.

15.
J Am Chem Soc ; 127(19): 7235-42, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15884965

RESUMO

Electron impact ionization of a helium atom in a helium nanodroplet is followed by rapid charge migration, which can ultimately result in the localization of the charge on an atomic or molecular solute. This process is studied here for the cases of hydrogen cyanide, acetylene, and cyanoacetylene in helium, using a new experimental method we call optically selected mass spectrometry (OSMS). The method combines infrared laser spectroscopy with mass spectrometry to separate the contributions to the overall droplet beam mass spectrum from the various species present under a given set of conditions. This is done by vibrationally exciting a specific species that exists in a subset of the droplets (for example, the droplets containing a single HCN molecule). The resulting helium evaporation leads to a concomitant reduction in the ionization cross sections for these droplets. This method is used to study the charge migration in helium and reveals that the probability of charge transfer to a solvated molecule does not approach unity for small droplets and depends on the identity of the solvated molecule. The experimental results are explained quantitatively by considering the effect of the electrostatic potential (between the charge and the embedded molecule) on the trajectory of the migrating charge.

16.
J Am Chem Soc ; 126(36): 11283-92, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15355110

RESUMO

Reported here is a study of the effects of liquid helium cooling on the fragmentation of ions formed by electron impact mass ionization. The molecules of interest are picked up by the helium nanodroplets as they pass through a low pressure oven. Electron impact ionization of a helium atom in the droplet is followed by resonant charge transfer to neighboring helium atoms. When the charge is transferred to the target molecule, the difference in the ionization potentials between helium and the molecule results in the formation of a vibrationally hot ion. In isolation, the hot parent ion would undergo subsequent fragmentation. On the other hand, if the cooling due to the helium is fast enough, the parent ion will be actively cooled before fragmentation occurs. The target molecule used in the present study is triphenylmethanol (TPM), an important species in synthetic chemistry, used to sterically protect hydroxyl groups. Threshold PhotoElectron PhotoIon COincidence (TPEPICO) experiments are also reported for gas-phase TPM to help quantify the ion energetics resulting from the cooling effects of the helium droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...